Lower Bounds for BMRM and Faster Rates for Training SVMs
نویسندگان
چکیده
Regularized risk minimization with the binary hinge loss and its variants lies at the heart of many machine learning problems. Bundle methods for regularized risk minimization (BMRM) and the closely related SVMStruct are considered the best general purpose solvers to tackle this problem. It was recently shown that BMRM requires O(1/ε) iterations to converge to an ε accurate solution. In the first part of the paper we use the Hadamard matrix to construct a regularized risk minimization problem and show that these rates cannot be improved. We then show how one can exploit the structure of the objective function to devise an algorithm for the binary hinge loss which converges to an ε accurate solution in O(1/ √ ε) iterations.
منابع مشابه
Training SVMs Without Offset
We develop, analyze, and test a training algorithm for support vector machine classifiers without offset. Key features of this algorithm are a new, statistically motivated stopping criterion, new warm start options, and a set of inexpensive working set selection strategies that significantly reduce the number of iterations. For these working set strategies, we establish convergence rates that, ...
متن کاملA comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater
The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, ...
متن کاملSpatial Decompositions for Large Scale SVMs
Although support vector machines (SVMs) are theoretically well understood, their underlying optimization problem becomes very expensive if, for example, hundreds of thousands of samples and a non-linear kernel are considered. Several approaches have been proposed in the past to address this serious limitation. In this work we investigate a decomposition strategy that learns on small, spatially ...
متن کاملLower Bounds on Rate of Convergence of Cutting Plane Methods
In a recent paper Joachims [1] presented SVM-Perf, a cutting plane method (CPM) for training linear Support Vector Machines (SVMs) which converges to an accurate solution in O(1/ ) iterations. By tightening the analysis, Teo et al. [2] showed thatO(1/ ) iterations suffice. Given the impressive convergence speed of CPM on a number of practical problems, it was conjectured that these rates could ...
متن کاملSparseness of Support Vector Machines
Support vector machines (SVMs) construct decision functions that are linear combinations of kernel evaluations on the training set. The samples with non-vanishing coefficients are called support vectors. In this work we establish lower (asymptotical) bounds on the number of support vectors. On our way we prove several results which are of great importance for the understanding of SVMs. In parti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/0909.1334 شماره
صفحات -
تاریخ انتشار 2009